k-Stabilization of Reactive Tasks

Joffroy Beauquier*

Intuitively speaking, traditional fault tolerance
methods were global in nature. For example, the re-
set approach (e.g. [1, 2, 3]) is to bring all the nodes
into some predefined state. Such an approach is be-
coming less and less reasonable in modern networks,
since these are much larger than traditional ones, and
are growing fast. Thus it was suggested in [4] that
protocols can scale to handle larger networks if the
smaller is the number of faults, the shorter is the re-
covery time. Such protocols are called fault local [6].
In [4, 5, 6] it is shown how to do that for various cases
of non-reactive problems

We study the scenario where transient faults hit up
to k (for a given k) nodes in a reactive asynchronous
distributed system by corrupting their state unde-
tectably. (The exact number of nodes, the specific
nodes the faults hit, and the time they occur, if at
all, are not known.) We concentrate on the standard
benchmark problem for reactive systems- token pass-
ing, and we treat the more realistic case, where a
node P that holds the token must finish some task
(often termed the critical section of its program, a
section that is outside of our algorithm) before for-
warding the token. Thus no other node can guess the
duration of the time that P holds the token.

We present two algorithms that stabilize into a le-
gitimate configuration (in which exactly one node has

*LRI- Universite Paris Sud, Batiment 490, F91405 ORSAY
Cedex, France, Joffroy.Beauquier@Iri.fr

TLRI- Universite Paris Sud, Batiment 490, F91405 ORSAY
Cedex, France, Christophe.Genolini@Iri.fr

fDept. of Industrial
Engineering, The Technion, and IBM T.J. Watson Research
Center, kutten@ie.technion.ac.il

Christophe Genolinif

Shay Kutten

a token) in time that depends only on k, and not on
n (the number of nodes). One of the algorithms sta-
bilizes in O(k) time, and is, thus, time optimal. The
other stabilizes in O(k?) time, but uses only a con-
stant number of (logarithmic size) variables per node.
In terms of the number of individual nodes’ steps the
stabilization takes O(kn) steps, and it is shown that
any l-stabilizing algorithm (that is, when & = 1) must
use at least n — 3 steps.

The protocols are similar (one uses memory to
speed up the other). Both assume that & is smaller
than \/n. For the case that k is larger they have a
simple extension that makes them self stabilize.

References

[1] Y. Afek, S. Kutten and M. Yung. Local Detection for
Global Self Stabilization, Theoretical Computer Sci-
ence, No 186, pp. 199-229. 1997.

[2] B. Awerbuch, B. Patt-Shamir, G. Varghese, and
S. Dolev. Self-stabilization by local checking and
global reset. In Proc. 8th International Workshop on
Distributed Algorithms,

[3] S. Dolev and T. Herman. Superstabilizing protocols
for dynamic distributed systems. In Proc. of the Sec-
ond Workshop on Self-Stabilizing Systems, pages 3.1-
3.15, May 1995.

[4] S. Kutten and D. Peleg. Fault-local distributed mend-
ing. In Proceedings of the 14th Annual ACM Sym-
posium on Principles of Distributed Computing, Aug.
1995.

[6] S. Kutten and D. peleg. Tight Fault Locality. In 36th
Annual IEEE Symposium on Foundations of Com-
puter Science. Milwaukee, WI, USA, October 1995.

[6] S. Kutten and B. Patt-Shamir. Time-adaptive self-
stabilization. In Proceedings of the 16th Annual ACM
Symposium on Principles of Distributed Computing,
pages 149-158, Aug. 1997.



