
k-Stabilization of Reactive TasksJo�roy Beauquier� Christophe Genoliniy Shay Kutten z
Intuitively speaking, traditional fault tolerancemethods were global in nature. For example, the re-set approach (e.g. [1, 2, 3]) is to bring all the nodesinto some prede�ned state. Such an approach is be-coming less and less reasonable in modern networks,since these are much larger than traditional ones, andare growing fast. Thus it was suggested in [4] thatprotocols can scale to handle larger networks if thesmaller is the number of faults, the shorter is the re-covery time. Such protocols are called fault local [6].In [4, 5, 6] it is shown how to do that for various casesof non-reactive problemsWe study the scenario where transient faults hit upto k (for a given k) nodes in a reactive asynchronousdistributed system by corrupting their state unde-tectably. (The exact number of nodes, the speci�cnodes the faults hit, and the time they occur, if atall, are not known.) We concentrate on the standardbenchmark problem for reactive systems- token pass-ing, and we treat the more realistic case, where anode P that holds the token must �nish some task(often termed the critical section of its program, asection that is outside of our algorithm) before for-warding the token. Thus no other node can guess theduration of the time that P holds the token.We present two algorithms that stabilize into a le-gitimate con�guration (in which exactly one node has�LRI- Universite Paris Sud, Batiment 490, F91405 ORSAYCedex, France, Jo�roy.Beauquier@lri.fryLRI- Universite Paris Sud, Batiment 490, F91405 ORSAYCedex, France, Christophe.Genolini@lri.frzDept. of IndustrialEngineering, The Technion, and IBM T.J. Watson ResearchCenter, kutten@ie.technion.ac.il
0

a token) in time that depends only on k, and not onn (the number of nodes). One of the algorithms sta-bilizes in O(k) time, and is, thus, time optimal. Theother stabilizes in O(k2) time, but uses only a con-stant number of (logarithmic size) variables per node.In terms of the number of individual nodes' steps thestabilization takes O(kn) steps, and it is shown thatany 1-stabilizing algorithm (that is, when k = 1) mustuse at least n� 3 steps.The protocols are similar (one uses memory tospeed up the other). Both assume that k is smallerthan pn. For the case that k is larger they have asimple extension that makes them self stabilize.References[1] Y. Afek, S. Kutten and M. Yung. Local Detection forGlobal Self Stabilization, Theoretical Computer Sci-ence, No 186, pp. 199-229. 1997.[2] B. Awerbuch, B. Patt-Shamir, G. Varghese, andS. Dolev. Self-stabilization by local checking andglobal reset. In Proc. 8th International Workshop onDistributed Algorithms,[3] S. Dolev and T. Herman. Superstabilizing protocolsfor dynamic distributed systems. In Proc. of the Sec-ond Workshop on Self-Stabilizing Systems, pages 3.1{3.15, May 1995.[4] S. Kutten and D. Peleg. Fault-local distributed mend-ing. In Proceedings of the 14th Annual ACM Sym-posium on Principles of Distributed Computing, Aug.1995.[5] S. Kutten and D. peleg. Tight Fault Locality. In 36thAnnual IEEE Symposium on Foundations of Com-puter Science. Milwaukee, WI, USA, October 1995.[6] S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. In Proceedings of the 16th Annual ACMSymposium on Principles of Distributed Computing,pages 149{158, Aug. 1997.


