
c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 9 ( 2 0 1 3 ) 104–111

j o ur nal homep age : w ww.int l .e lsev ierhea l th .com/ journa ls /cmpb

KmL3D:  A  non-parametric  algorithm  for  clustering  joint
trajectories

C. Genolinia,b,∗, J.B. Pingault c, T. Drissb, S. Côtéc,d,e, R.E. Tremblayc,d,e,g, F. Vitaroc,d,
C.  Arnauda, B. Falissarde,f

a U1027, INSERM, Université Paul Sabatier, Toulouse III, France
b CeRSM (EA 2931), UFR STAPS, Université de Paris Ouest-Nanterre-La Défense, France
c Research Unit on Children’s Psychosocial Maladjustment, University of Montreal and Sainte–Justine Hospital, Montreal, Quebec, Canada
d International Laboratory for Child and Adolescent Mental Health Development, University of Montreal, Montreal, Quebec, Canada
e INSERM U669, Paris, France
f University Paris–Sud and University Descartes, Paris, France
g School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland

a  r  t  i  c  l  e  i  n  f  o

Article history:

Received 8 December 2011

Received in revised form

20  August 2012

Accepted 23 August 2012

Keywords:

Longitudinal data

k-means

Cluster analysis

a  b  s  t  r  a  c  t

In cohort studies, variables are measured repeatedly and can be considered as trajectories.

A  classic way to work with trajectories is to cluster them in order to detect the existence of

homogeneous patterns of evolution.

Since cohort studies usually measure a large number of variables, it might be interesting

to  study the joint evolution of several variables (also called joint-variable trajectories). To

date, the only way to cluster joint-trajectories is to cluster each trajectory independently,

then to cross the partitions obtained. This approach is unsatisfactory because it does not

take into account a possible co-evolution of variable-trajectories.

KmL3D is an R package that implements a version of k-means dedicated to clustering

joint-trajectories. It provides facilities for the management of missing values, offers several
Non-parametric algorithm

Joint trajectories

quality criteria and its graphic interface helps the user to select the best partition. KmL3D

can  work with any number of joint-variable trajectories. In the restricted case of two joint

trajectories, it proposes 3D tools to visualize the partitioning and then export 3D dynamic

rotating-graphs to PDF format.

To date, this has not been possible: the only way to cluster
1.  Introduction

A cohort study is a longitudinal study where variables are mea-
sured repeatedly over time. For each patient, these variables
evolve over time; they will be referred as the “variable-

trajectory”. A standard way to work with variable-trajectories
is to cluster them in order to detect the existence of homoge-
neous patient subgroups. Many  methods have been developed

∗ Corresponding author at: U1027, INSERM, Université Paul Sabatier, Tou
E-mail  address: genolini@u-paris10.fr (C. Genolini).

0169-2607/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights res
http://dx.doi.org/10.1016/j.cmpb.2012.08.016
© 2012 Elsevier Ireland Ltd. All rights reserved.

for this purpose [1–5]. All these methods cluster according to
a single variable-trajectory.

Since cohort studies usually measure a large number of
variables, it might be interesting to study the joint evolution
of several variable-trajectories (also called joint-trajectories).
louse III, France. Tel.: +33 1 58 41 28 52; fax: +33 1 58 41 28 43.

joint-trajectories is to cluster each variable-trajectory inde-
pendently, then to consider the combination of the partitions
obtained. In the case of two variable-trajectories (A) and (B)

erved.

dx.doi.org/10.1016/j.cmpb.2012.08.016
www.intl.elsevierhealth.com/journals/cmpb
mailto:genolini@u-paris10.fr
dx.doi.org/10.1016/j.cmpb.2012.08.016


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i

Fig. 1 – Clustering two variables jointly (A) or using the
cross-partition (C). (A) Clustering considering A′ and B′

jointly. (B) Clustering A′ and B′ separately. (C)
Cross-partition using the clusters found in B. (For
interpretation of the references to color in this figure legend,
t
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called joint variable-trajectories.
For subject i, the value of Y..A at time j is noted yijA.

The sequence yi.A = (yi1A, yi2A, . . ., yitA) is called a single
he reader is referred to the web version of the article.)

hat need to be considered simultaneously, authors determine
 partition P(A) by clustering only (A) and then they deter-
ine a partition P(B) by clustering only (B). Finally, according to
heir needs, they either use P(A) and P(B), or the cross-partition
(A × B) = P(A) × P(B). This approach is of limited value for two
easons. One advantage of classification methods is to enable
 o m e d i c i n e 1 0 9 ( 2 0 1 3 ) 104–111 105

the conversion of continuous data into categorical data, after
which the categories obtained can be used, for instance in a
regression model. If the two variables (A) and (B) are linked
in some way, partitions P(A) and P(B) will be correlated. So the
inclusion of P(A) and P(B) in the same regression will lead to
instability of the model. Another weakness of the method is
that partition P(A × B) does not enable detection of groups where
the co-evolution of the two variables is complex. By anal-
ogy, consider two  classic variables1 A′ and B′ (‘classic variable’
opposed to ‘variable-trajectories’) plotted in Fig. 1A. There are
clearly three clusters. If we cluster according to variable A′

and then according to variable B′, we  identify two  groups for
A′ (Fig. 1B, orange and blue) and two groups for B′ (Fig. 1B, green
and red). The cross-partition resulting from these two  cluster-
ing procedures is presented Fig. 1C. Four groups are obtained,
but not those found by clustering the two  variables jointly
(Fig. 1A). This example underlines the need for a clustering
method that considers several variable-trajectories simulta-
neously.

In addition, clustering several continuous correlated vari-
ables (the trajectories) in a single nominal variable (groups)
summarize information of correlated variable. This makes the
use of this information for further statistical analysis much
easier. For example, a single nominal variable can be used in
a regression (as we show in example “inattention”, Section
2.3) whereas the inclusion of joint trajectories in such model
would not have been possible.

kml3d, from the package KmL3D [6],  is a partitioning algo-
rithm that works jointly on several variable trajectories. It is
based on the k-means algorithm [7,8]. It has the same advan-
tages as KmL  (management of missing values, several quality
criteria, graphic interface to select the best partition [9,10]). It
also provides 3D tools for visualizing the partitioning of the
joint-trajectories or for exporting 3D rotating-graphs to PDF
format [11].

The rest of this paper is organized as follows: Section 2
presents KmL3D, a new implementation of k-means designed
to cluster joint trajectories. Section 3 contains simulations on
both artificial and real data. The performances of KmL3D are
compared to the results obtained using classic clustering on
each variable, then considering the cross-partition. Section 4
is the discussion.

2.  Materials  and  methods

2.1. Algorithm

2.1.1.  Notations
Let S be a set of n subjects. For each subject, m outcome vari-
ables Y..A, Y..B,. . ., Y..M at t different times are measured. Y..A is
called a single variable-trajectory (or variable-trajectory).  Several
variable-trajectories (Y..A, Y..B, . . ., Y..M) considered jointly are
1 We present here an example using classic variables for the
convenience of graphic representation, but all this is directly trans-
posable to variable-trajectories.

dx.doi.org/10.1016/j.cmpb.2012.08.016
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trajectory2 (or trajectory). Several single trajectories yi.. =⎛
⎜⎝

yi.A

yi,B

. . .

yi.M

⎞
⎟⎠ are called joint trajectories. Overall, yi.. is a matrix

yi.. =

⎛
⎜⎜⎝

yi1A yi2A . . . yitA

yi1B yi2B yitB

...
. . .

...
yi1M yi2M . . . yitM

⎞
⎟⎟⎠ where lines are single variable

trajectories. If j is fixed, the sequence yij. =

⎛
⎜⎝

yijA

yijB

. . .

yijM

⎞
⎟⎠ is called

individual’s state at time j. The individual’s state at time j is
the jth column of the matrix yi...

The aim of clustering is to divide S into k homogeneous
sub-groups.

2.1.2. k-means
k-means is a non-parametric hill-climbing algorithm [12]
belonging to the EM class (Expectation–Maximization) [13]. It
works as follows: initially, each observation is assigned to a
cluster. Then the optimal clustering is reached by alternating
two phases. During the Expectation phase, the centers of each
cluster are computed. The Maximization phase then consists in
assigning each observation to its “nearest cluster”. The alter-
nation of the two phases is repeated until no further changes
occur in the clusters. k-means is non-parametric in the sense
that there is no need to make hypothesis neither on the vari-
ables distribution nor on the shape of the means trajectories
of each groups.

In the case of longitudinal data, “cluster centers” are the
mean trajectory of each group, that is to say the mean of all
the individual trajectories that belong to the clusters. For an
individual i, the “nearest cluster” C is the cluster that mini-
mizes the distance between i and the mean trajectory of C.
This concept is strongly related to the concept of distance,
which we  will now define.

2.1.3. Distance
k-means can work with various distances: Euclidean, Man-
hattan, Minkowski (the generalization of the two previous
distances) and many  others. Working on joint-trajectories
raises the question of the distance between two joint-
trajectories. More  precisely, considering the joint-trajectories
of two individuals y1.. and y2.., we seek to define d(y1..,y2..), the
distance between y1.. and y2... Strictly speaking, this is the dis-
tance between two matrices. Several methods are possible,
we will focus on two. The first is to consider the t columns
of the two matrixes, then compute t distances between the t
couples of columns and finally to combine these t distances

using a function that will combine the “column-distances”.
The second is to consider the m lines of the two matrixes,
then compute m distances between the m couples of lines and

2 Strictly speaking, it should be called single individual trajectory.
But the current practice is to omit the word “individual”.
 b i o m e d i c i n e 1 0 9 ( 2 0 1 3 ) 104–111

finally to combine these m distances using a function that will
combine the “line-distances”.

More formally, let Dist be a distance function and ||··|| be a
norm. To compute a distance d between y1.. and y2.. accord-
ing to the first method, for each fixed j, we define the distance
between y1j. and y2j. (distance between the individuals’ state
at time j) as dj.(y1j.,y2j.) = Dist(y1j., y2j.). This is the distance
between column j in matrix y1.. and column j in matrix y2...
The result is a “vector of t distances” (d1.(y11.,y21.), d2.(y12.,y22.),
. . ., dt(y1t.,y2t.)). Then we  combine these t distances using a
function that algebraically corresponds to a norm |||···|| of the
vector of distance. Overall, the distance between y1.. and y2..is
d(y1..,y2..) = || (d1.(y11.,y21.), d2.(y12.,y22.), . . ., dt.(y1t.,y2t.)) ||.

To compute a distance d′ between y1.. and y2.. according
to the second method, for each variable X, we  define the dis-
tance between y1.X and y2.X (distance between the individual
trajectories X) as d.X(y1.X,y2.X) = Dist(y1.X, y2.X). This is the dis-
tance between line X in matrix y1.. and line X in matrix y2...The
result is a “vector of m distances” (d.A(y1.A,y2.A), d.B(y1.B,y2.B),
. . ., d.M(y1.M.,y2.M)). Then we combine these m distances by
considering the norm ||···|| of the vector of distance. Overall,
d′(y1..,y2..) = ||(d.A(y1.A,y2.A), d.B(y1.B,y2.B), . . .,  d.M(y1.M.,y2.M)) ||.

The choice of the norm ||··|| the distance Dist and method d
or d′ can lead to the definition of a large number of distances
between y1.. and y2... In practice, the standard p-norm for ||··||
and the Minkovsky distance with parameters p for Dist give
the same result: d(y1..,y2..) = d′(y1..,y2..)

Proof.

d(y1.., y2..) = p

√∑
j
(dj.(y1j., y2j.))

= p

√∑
j

(
p
√∑

X
|y1jX − y2jX|p)p

)

= p

√∑
j

∑
X
|y1jX − y2jX|p

= p

√∑
X

(
p

√∑
j
|y1jX − y2jX|p)p

)
= p

√∑
X

(d.X(y1.X, y2.X))p

= d′(y1.., y2..)

(1)

We can therefore define the Minkowski distance between two
joint variable trajectories:

Dist(y1.., y2..) = p

√∑
j

∑
X
|y1jX − y2jX|p (2)

The Euclidean distance is obtained by setting p = 2, the Man-
hattan distance by setting p = 1 and the maximum distance by
passing to the limit p → +∞. In practice, KmL3D uses Euclidean
distance as the default distance. But it also allows users to
define their own distance.

2.1.4.  Standardization
Since cohort studies deal with several different kinds of vari-
ables, the joint variables cannot be measured on the same

scale. This problem has already been extensively discussed
in the classic (non-trajectory) situation [12]. A possible solu-
tion is then to normalize the data. This can also be done
with trajectories. KmL3D provides functions to normalize the

dx.doi.org/10.1016/j.cmpb.2012.08.016
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Fig. 2 – Different data set shapes used for generating
artificial data. (A) Dataset “Three diverging lines”. (B)
c o m p u t e r m e t h o d s a n d p r o g r a m s 

ariable-trajectories. A small difference with the classic situ-
tion exists, as each variable-trajectory is not normalized at
ach time but in its entirety: let Y(A) and sd(A) be respectively
he mean and the standard deviation of all y

(A)
ij

(for each i and

). Then the outcome y
(A)
ij

becomes:

′(A)
ij

=
(y(A)

ij
− y(A))

sd(A)
(3)

The normalized joint trajectory y′
i..

is obtained by normal-

zation of its single trajectories y′(X)
i.

one by one.

.1.5. Visualization
he partitioning of longitudinal data allows the identification
f homogeneous subgroups. One of the advantages of this
echnique is to exhibit the average trajectory of each groups.
hese mean trajectories summarize the overall evolution of

he group, thus highlighting specific behaviors. The obtained
lusters can then be used in statistical analyses, either as an
xplanatory or as a dependent variable. It is therefore impor-
ant to be able to graphically display these typical trajectories.

orking on single-trajectories, the plot is fairly simple: let us
onsider a coordinate system (O,x,y). The time is placed on the
xis of abscissa [O,x), the variable is on the vertical axis [O,y).

Drawing joint trajectories is more  complex. A graphic rep-
esentation is possible in the case of two joint-trajectories, by
sing a three-dimensional coordinate system (O,x,y,z): time

s on axis [Ox), the first variable is on axis [O, y), the third
s on axis [O, z). This gives a 3D representation of the evolu-
ion of the joint-trajectories (which explains the name of the
ackage KmL3D). It is interesting to note that recent develop-
ents in pdf format let the user include 3D dynamic graphs in

df documents. The user can rotate the graph, changing the
oint of view, with the mouse. This can be very convenient to
rovide scope for displaying joint-trajectories in Scientific arti-
les. Examples of this kind of graph are presented Figs. 2a–c
nd 3.

.1.6.  Optimal  number  of  clusters,  dealing  with  missing
ata,  avoiding  local  maximum
he choice of the optimum number of clusters is based on the
alinski and Harabatz criterion:

(k) = Trace(B)
Trace(W)

n − k

k − 1
(4)

here B is the matrix of variance between, W the matrix of
ariance within, n the number of individuals and k the number
f groups (see Ref. [14] for details). Since the limits of this type
f quality criterion are well known [15], two other criteria are
lso available: Ray and Turi [16] and Davies and Bouldin [17].
he Ray and Turi criterion is:

(k) = DW
DB

(5)
here DW, the distance within, is ˙iDistance(i,  center(i)) and
B, the distance between is DB = mini /=  j(Distance(center(i),
enter(j))).
Dataset “Three parallel lines”. (C) Dataset “Five lines”.

Davies and Bouldin criterion is:

d(k) = Mean(Proximity(cluster(i), clusters(j))) (6)

where Proximity(i, j) = (DistInternal(i)  + DistInternal(j))/
(DistExternal(i, j)). The definition of DistInternal and Dis-
tExternal can lead to various measures. In KmL3D, we  use the
classic distance “average to the center” for DistInternal and
“distance between centers” for DistExternal.
In addition, a graphic interface enables the user to visualize
the partition obtained.

The management of missing data [18–20] is performed
either by imputing the trajectories or by using distances with

dx.doi.org/10.1016/j.cmpb.2012.08.016
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Fig. 3 – Effect of standard deviation noise using the Jaccard similarity index, according to the shape (black: P3D/blue:
P(A × B)/red: P(A × B-max)). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of the article.)

Gower adjustment [12]. Available imputing methods include
LOCF (Last Occurrence Carried Forward: a missing value is allo-
cated the previous known value), linear interpolation (a line
is drawn between the known values surrounding the missing
ones) or CopyMean (imputation needs two steps: first, linear
interpolation is used; then a variation copying the population
mean trajectory is added. For more  details, see Ref. [10]).

2.2.  Simulation  data

Conventional clustering techniques involve partitioning
the variables one after the other, then considering the
cross-partitions. KmL3D makes it possible to cluster joint-
trajectories. In order to compare the efficiency of the two
approaches, we  compared the procedures on both simulated
and real data. For simplicity, we worked on two variable-
trajectories, but kml3d can cater for more.

We worked on 4200 data sets defined as follows: A data
set shape is defined by a number of groups and, for each
groups, two real functions (from R to R). These two functions
define the typical joint trajectory that follows individuals in
the group. Jointly, they can be considered as a function from
R to R2 which is called the theoretical joint trajectory. For exam-
ple, if we  study the joint evolution of night sleep duration and
hyperactivity, the first function is one that associates sleep
duration to each time point, and the second associates a score
for hyperactivity to each time. Together, these two functions
define the joint-trajectory that associate a pair of data (sleep
duration, hyperactivity) to each time. A data set shape is a
given number of groups and a theoretical joint trajectory for
each group. For our simulations, we  defined 3 data set shapes
(Fig. 2A–C):

• 1: In “Three diverging lines”, there are three groups A, B
and C. The theoretical joint trajectories are: fA(k) = (0,0);

fB(k) = (0,k); fC(k) = (k,0) with k in [0:10].

• 2: In “Three parallels lines”, there are three groups A, B
and C. The theoretical joint trajectories are: fA(k) = (0,0);
fB(k) = (4,8); fC(k) = (8,4) with k in [0:10].
• 3: In “Fives lines”, there are five groups A, B, C, D and E. The
theoretical joint trajectories are: fA(k) = (0,0); fB(k) = (10,10);
fC(k) = (0,10); fD(k) = (k,k); fE(k) = (10,10 − k) with k in [0:10].

Data sets are then created from the data set shape. Initially,
a number of individuals per group is set (either 50 or 200). The
trajectory of an individual is obtained by adding a residual
variation to the theoretical joint trajectory of his group. Indi-
vidual variations randomly follow a normal distribution with
mean (0, 0) and variance (�2, �2). The standard deviation varies
from 1 to 8 by steps of 0.01. Since the distance between two
theoretical joint trajectories is around 10, � = 1 provides some
“easily identifiable and distinct clusters” whereas � = 8 gives
some “very overlapping groups”. Overall, 3 (shapes) times 2
(number of subjects) times 700 (standard deviation) give 4200
data sets.

For each data set, we  clustered the joint-trajectories using
KmL3D. This partition called joint partition is noted P3D. Then
we constructed two univariates partitions considering each
variable-trajectory separately (using kml  from package KmL
[21]). These two partitions are noted P(A) and P(B). Finally, P(A × B)

is obtained by crossing the two  partitions P(A) and P(B). The par-
tition obtained is called the cross univariate partition. Note that
the number of clusters found by kml  is not necessarily the
true number of clusters. For example, on the data shape “five
lines”, the projection of population (A) is partitioned into four
groups whereas the projection of population (B) is partitioned
into three groups. So we  also constructed partitions P(A-max)

and P(B-max) based on the real number of clusters present in
the artificial data set (5 for the shape “five lines”, 3 for the
two other shapes). Then P(A × B-max) is the partition obtained
by crossing P(A-max) and P(B-max). It is called the maximum cross
partition (maximum referring to the number of clusters). This
partition may seem irrelevant for the detection of clusters and
present quite a large number of clusters (25 in the case of
“five lines”), but because it is the current method used in the

processing of joint trajectories, it is important to consider its
performances.

To check the quality of the procedure, we compared the
partition it found with the true partition, PTRUE (on artificial

dx.doi.org/10.1016/j.cmpb.2012.08.016
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Fig. 4 – Joint trajectories of inattention evaluate by the
mother (Y) or the teacher (Z).
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Table 1 – Average Jaccard similarity index, according to
the shape.

Dataset shape P3D P(A × B) P(A × B-max)

tories with KmL3D gives very different results from those
obtained by crossing the single variable partitions. If we
ata, PTRUE is known). The closer a partition is to PTRUE, the
etter is its quality. The similarity index that assesses the
roximity between the partition and PTRUE is the Jaccard index

22,23].

.3.  Real  data

ur first real example is derived from Ref. [24]. The objective
f the study was to determine the link between inattention
nd high school graduation, as inattention was shown to be
redictive of educational attainment [25,26]. The participants
onsisted of 2000 children (1001 boys) randomly selected from
espondents in a larger representative sample of kindergarten
hildren from the province of Quebec, in 1986–1987. Children
ere rated on one side by the teacher and on the other side by

he mother. The rating was performed using the Social Behav-
or Questionnaire (SBQ) [27] each year between kindergarten
nd sixth grade either by teachers or by mothers, which pro-
ided seven assessments between the ages of 6 and 12 years.
hese two  assessments were highly correlated so they could
ot both be used as predictors for high school graduation.

Three partitions can be computed: the first (Mr) uses
other ratings alone (by KmL), the second (Tr) is computed

sing teacher ratings alone (by KmL), the third (MTr)  uses
imensional trajectories with assessments from both infor-
ants (by KmL3D, see Fig. 4). All three partitions present four

roups. Since the different quality criteria all disagree on the
umber of groups, the choice was based on the literature and
ccording to expert advice. They are close to each other, but
here are some differences. They give the estimations of three

odels that are presented in Table 2. As expected from the lit-
rature, teacher assessments of inattention were clearly more
redictive than maternal assessments. Taking into account
oth informants improved the fit of the model as shown by the
ecrease in the Akaike Information Criterion (AIC). Further-
ore, a higher pseudo R-squared indicates which model better

redicts the outcome (when compared to a pseudo R-squared
n the same data, predicting the same outcome, which is the
ase here). In the present case, model 3 with three dimen-

ional trajectories based on both informants had the highest
seudo-R2.
3 Diverging 0.86 0.83 0.36
3 Parallel 0.90 0.61 0.67
5 Lines 0.91 0.81 0.47

2.4. Real  data  “sleep  duration”

Our second example is derived from Touchette et al. [28]. In
a sample of 2057 children aged 1.5–5 years, night-time sleep
duration and hyperactivity were measured yearly by ques-
tionnaires administered to mothers. The aim of the study
was to investigate the developmental trajectories in rela-
tion to night-time sleep duration and hyperactivity over the
preschool years.

3. Results

3.1. Simulated  data

Table 1 and Fig. 3 show the results. The example “three
diverging” represents trajectories for which the co-evolution
corresponds to a simple crossover of the two variable-
trajectories. Not surprisingly, both methods joint partition P3D

and cross partition P(A × B) give good results. Maximum cross
partition P(A × B-max) gives the worst results. “Three parallel”
presents an illusion of simplicity. In practice, the noise added
to the trajectories makes it difficult to reconstruct the clus-
ters when each variable is considered independently. The
joint partition exhibits good performances (fairly close to those
obtained on “Three diverging lines”). The cross partition and
maximum cross partition gives less good results. “Five lines”
is an example representing a more  complex co-evolution of
the two variables. Once again, joint partition gives good results,
cross partition is not as good and maximum cross partition is the
worst.

3.2.  Real  data  “inattention”

All three partitions present four groups. They are close to each
other, but some differences exist. They lead to the estimation
of three models that are presented Table 2. Group ‘Inattention
A’ is the reference. As expected from the literature, teacher
assessments of inattention were clearly more  predictive than
maternal assessments. Taking into account both informants
improved the prediction with higher odds ratios, in particular
for the two highest trajectories, as well as better fit statistics
(including the pseudo-R2).

3.3. Real  data  “sleep  duration”

Using KmL  on the single trajectory variables gives results
very close to those computed using Proc Traj published
in the article. Conversely, the analysis of the joint trajec-
compare the crossed partition with the kml3d partition, we
find that only 948 individuals (out of 1917) are classified in
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Table 2 – Prediction of high school graduation failure according to inattention.

Mother ratings (Mr) Teacher ratings (Tr) Mother and teacher ratings (MTr)

% aRR 95% CI % aRR 95% CI % aRR 95% CI

Inattention A 12.9% 9.9% 8.4%
Inattention B 24.1% 1.67*** 1.30–2.14 32.9% 2.85*** 2.22–3.67 23.5% 2.52*** 1.89–3.37
Inattention C 43.5% 2.81*** 2.22–3.55 45.4% 3.86*** 3.05–4.88 48.8% 4.74*** 3.64–6.17
Inattention D 63.6% 3.73*** 2.93–4.74 69.2% 5.52*** 4.40–6.91 67.8% 6.48*** 5.01–8.37
AIC 1888.9 1752.7 1714.2
Nagelkerke Pseudo-R2 0.27 0.35 0.38

Note:  Percentages of participants failing to graduate in each trajectory are presented the first column of each model (%). Odds ratios tend to
overestimate the risk for common outcomes [29] which is the case here; we present risk ratios instead. Unadjusted risk ratios can be calculated
by simply dividing the percentages in each trajectory (e.g. for mother ratings, the risk ratio for not graduating when comparing participants in
the high [D] and the low reference group [A] is 63.6/12.9 = 4.9). Adjusted risk ratios were estimated by fitting a Poisson regression to the binary

nce i
outcome, using a sandwich estimator of variance to estimate confide
∗∗∗ <.001.

the same way, which is slightly less than 50%. The Jaccard
similarity index between the two partitions is 0.25. In addi-
tion, KmL3D suggests the use of 4 groups instead of 12,
in which individuals would be divided as follows: A: 28.8%
[hyper = medium high/sleep = high]; B: 28.2% [hyper = medium
low/sleep = low]; C: 27.5 [hyper = low/sleep = high]; D: 15.4%
[hyper = high/sleep = low].

4.  Discussion

This article presents the package KmL3D, a version of k-means
adapted to the analysis of joint-trajectories. Our package
works on R platform and is available at Ref. [6].  Like KmL, it
is able to deal with missing values, it provides an easy way
to run the algorithm several times and its graphical interface
helps the user to choose the appropriate number of clusters
when criteria traditionally devoted to this task are not effi-
cient. It also provides 3D devices for displaying and exporting
results. Clustering trajectories is a major issue for statisti-
cal analysis of cohort studies. It makes it possible to define
the typical trajectories that follow a population (for instance
typical trajectories for inattention). It also summarize several
continuous correlated variables (the trajectories) in a single
nominal variable (groups) which are easier to use for further
statistical analysis (such as modeling high school graduation
using typical groups for inattention).

The classic approach to cluster joint-trajectories is to find
a univariate partition for each variable-trajectory, then to
consider the cross univariate partition. KmL3D clusters data
taking into account the co-evolution of the trajectories. To
evaluate the effectiveness of the method, we compared it to
the classic approach. On artificial data (data for which the
group structure is known), the performance of kml3d was
clearly better than conventional techniques.

These performances can be partly explained by the fact
that the groups in our 3D examples were quite different from
those obtained by crossing univariate partitions. It is thus rea-
sonable to ask whether such situations exist in reality. A real

example shows that indeed, partitions obtained with kml3d
differ from the crossed univariate partitions.

We also explored the impact of the method on the inclu-
sion of groups in a regression. For this, we used real data.
ntervals (95% CI).

The results show that taking into account the co-evolution
of variable trajectories improves the understanding of the
development of a behavior as well as giving a more  accurate
estimation of its predictive value.

4.1. Limitations

The limitations of KmL3D are inherent to all clustering algo-
rithms. These techniques are mainly exploratory; they cannot
statistically test the reality of cluster existence. Moreover, the
determination of the optimal cluster number is still an unset-
tled issue. The EM-algorithm can also be particularly sensitive
to the problem of local maximum. KmL3D provides some tools
to “see” the joint trajectories in 3D, but these tools can only dis-
play 2 variables at the same time. This might be a problem for
clustering data using more  than two joint variables. Finally,
KmL3D is not model-based, which can be an advantage (non
parametric, more  flexible) but also a disadvantage (no scope
for testing goodness of fit).

4.2.  Advantages

KmL3D provides a way to cluster data according to several joint
trajectories. This can help to highlight relationships between
complex–variable-trajectories. It could also enable the com-
bining of information available into two strongly-correlated
variable-trajectories.

In addition, KmL3D also inherits all the improvements of
KmL: as a non-parametric algorithm, it does not need any prior
information and it avoids the issues related to model selec-
tion. It enables the clustering of trajectories that do not follow
polynomial trajectories.

4.3.  Perspectives

A number of unsolved problems need investigation. The opti-
mization of cluster number, a long-standing and important
question, is becoming a more  and more  crucial issue since
it is not possible to graphically represent the result of the

partitioning process. Perhaps the particular situation of joint
longitudinal data could lead to an efficient solution not yet
found in the general context of cluster analysis. Another inter-
esting approach would be to cluster trajectories (still in a
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on-parametric manner) with adjustment on covariates. This
ould reduce the overall variance and thus makes cluster
etection more  efficient.
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