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Cohort studies are becoming essential tools in epidemiological research. In these

studies, measurements are not restricted to single variables but can be seen as tra-

jectories. Thus, an important question concerns the existence of homogeneous patient

trajectories.

KmL is an R package providing an implementation of k-means designed to work specifi-

cally on longitudinal data. It provides several different techniques for dealing with missing

values in trajectories (classical ones like linear interpolation or LOCF but also new ones like

copyMean). It can run k-means with distances specifically designed for longitudinal data

(like Frechet distance or any user-defined distance). Its graphical interface helps the user

to  choose the appropriate number of clusters when classic criteria are not efficient. It also
Non-parametric algorithm provides an easy way to export graphical representations of the mean trajectories result-

ing  from the clustering. Finally, it runs the algorithm several times, using various kinds of

starting conditions and/or numbers of clusters to be sought, thus sparing the user a lot of

manual re-sampling.
1.  Introduction

Cohort studies are becoming essential tools in epidemiolog-
ical research. In these studies, measurements collected for
a single subject can be seen as trajectories. Thus, an impor-
tant question concerns the existence of homogeneous patient
trajectories. From a statistical point of view many  methods
have been developed to deal with this issue [1–4]. In its sur-
vey [5] Warren-Liao divide these methods into five families:
partitioning methods construct k clusters containing at least
one individual; hierarchical methods work by grouping data

objects into a tree of clusters; density-based methods make
clusters grow as long as the density in the “neighborhood”
exceeds a certain threshold; grid-based methods quantize the

∗ Corresponding author at: Inserm, U669, 97 Bd Port Royal, 75014 Paris, 

E-mail address: genolini@u-paris10.fr (C. Genolini).
0169-2607/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights res
doi:10.1016/j.cmpb.2011.05.008
© 2011 Elsevier Ireland Ltd. All rights reserved.

object space and perform the clustering operation on the
resulting finite grid structure; model-based methods assume
a model for each cluster and look for the best fit of data to the
model.

The pros and cons of these approaches are regularly dis-
cussed [6,7] even if there is little data to show which method
is indeed preferable in which situation. In this paper, we
consider k-means, a well-known partitioning method [8,9].
In favor of an algorithm of this type the following points
can be cited: (1) it does not require any normality or para-
metric assumptions within clusters (although it might be
more efficient under certain assumptions). This might be
France. Tel.: +33 6 21 48 47 84.

of great interest when the aim is to cluster data on which
no prior information is available; (2) it is likely to be more
robust as regards numerical convergence; (3) in the particular

erved.
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ontext of longitudinal data, it does not require any assump-
ion regarding the shape of the trajectory (this is likely to be an
mportant point: the clustering of longitudinal data is basically
n exploratory approach); (4) also in the longitudinal context,
t is independent from time scaling.

On the other hand, it also suffers from some drawbacks:
1) formal tests cannot be used to check the validity of the
artition; (2) the number of clusters needs to be known a priori;

3) the algorithm is not deterministic, the starting condition is
ften determined at random. So it may converge to a local
ptimum and one cannot be sure that the best partition has
een found; (4) the estimation of a quality criterion cannot be
erformed if there are missing values in the trajectories.

Regarding software, numerous versions of k-means exist,
ome with a traditional approach [10,11],  some with variations
12–17]. They however have several weaknesses: (1) they are
ot able to deal with missing values. (2) Since determining the
umber of clusters is still an open question, they require the
ser to manually re-run the k-means several times.

KmL  is a new implementation of k-means specifically
esigned to analyze longitudinal data. Our package is designed
or R platform and is available on CRAN [18]. It is able to
eal with missing values; it also provides an easy way to
un the algorithm several times, varying the starting condi-
ions and/or the number of clusters looked for; its graphical
nterface helps the user to choose the appropriate number of
lusters when the classic criterion is not efficient.

Section 2 presents theoretical aspects of KmL: the algo-
ithm, different solutions to deal with missing values and
uality criteria to select the best number of clusters. Section

 gives a description of the package. Section 4 compares the
mpact of the different starting conditions. Section 5 is the
iscussion.

.  Theoretical  background

.1.  Introduction  to  k-means

-Means is a hill-climbing algorithm [7] belonging to the EM
lass (Expectation–Maximization) [11]. EM algorithms work as
ollow: Initially, each observation is assigned to a cluster; then
he optimal partition is reached by alternating two phases
alled respectively “Expectation” and Maximization”. During
he Expectation phase, the center of each cluster is deter-

ined. Then the Maximization consists in assigning each
bservation to its “nearest cluster”. The alternation of the two
hases is repeated until no further changes occur in the clus-
ers.

More precisely, consider a set S of n subjects. For each sub-
ect, an outcome variable Y at t different times is measured.
he value of Y for subject i at time l is noted as yil. For sub-

ect i, the sequence yil is called a trajectory, it is noted yi = (yi1,

i2, . . .,  yit). The aim of clustering is to divide S into k homo-
eneous sub-groups. The notion of the “nearest cluster” is
trongly related to the definition of distance. Traditionally,

-means can be run using several distances. Euclidean dis-

ance is defined as DistE(yi, yj) =
√∑t

l=1(yil − yjl)
2. Manhattan

istance DistM(yi, yj) =
∑t

l=1|yil − yjl| is more  robust to outliers
 m e d i c i n e 1 0 4 ( 2 0 1 1 ) e112–e121 e113

[10].  KmL  can also work using distances specific to longitu-
dinal data like the Frechet distance or dynamic time warping
[19]. Finally, it can work with some user-defined distances thus
opening many  possibilities.

2.2.  Choosing  an  optimal  number  of  clusters

An unsettled problem with k-means is the need to know a
priori the number of clusters. A possible solution is to run k-
means varying the initial number of seeds, and then to select
the “best” number of clusters according to some quality crite-
rion.

KmL  uses mainly the Calinski & Harabatz criterion C(k)
[20]. It has interesting properties, as shown by several authors
[21,22]. The Calinski & Harabatz criterion can be defined as
follows: let nm be the number of trajectories in cluster m;  ym

the mean trajectories of clusters m; y the mean trajectory of
the whole set S. Let v′ denotes the transposition of vector v.
The between-clusters covariance matrix is B =

∑k

m=1nm(ym −
y)(ym − y)′. If trace(B) designates the sum of the diagonal coef-
ficients of B, high values of trace(B) denote well-separated
clusters, while low values of trace(B) indicate clusters close
to each other. The within-cluster covariance matrix is W =∑k

m=1

∑nm

l=1(yml − ym)(yml − ym)′. Low values of trace(W) cor-
respond to compact clusters while high values of trace(W)
correspond to heterogeneous groups (see [7] for details).
The Calinski & Harabazt criterion combines the within and
between matrices to evaluate the quality of the partition. The
optimal number of clusters corresponds to the value of k that
maximizes C(k) = (trace(B)/trace(W))(n − k/k − 1).

If the Calinski & Harabazt criterion can help to select the
optimal number of clusters, it has been shown that it does
not always find the correct solution [22]. In practice, users
often like to have several criteria at their disposal so that their
concordance will strengthen the reliability of the result. In
addition to the Calinski & Harabatz criterion, KmL  calculates
two other criteria: Ray & Turi [23] and Davies & Bouldin [24].
Both indices are regularly presented with interesting proper-
ties [22].

Since both Shim and Milligan suggest that Calinski & Hara-
batz is the index with the most interesting properties [21,22],
KmL  uses it as the main selection criterion. The other two
(Ray & Turi and Davies & Bouldin) are available for checking
consistency.

2.3.  Avoiding  a  local  maximum

One major weakness of hill-climbing algorithms is that they
may converge to a local maximum that does not correspond
to the best possible partition in terms of homogeneity [8,25].
To overcome this problem, different solutions have been pro-
posed. Some authors [26,27,10] compare several methods of
determination of the initial cluster seeds in terms of efficiency.
Vlachos et al. [15] propose a “wavelet” k-means: an initial clus-
tering is performed on trajectories reduced to a single point
(the mean of each trajectory). The results obtained from this

“quick and dirty” clustering are used to initialize clustering
at a slightly finer level of approximation (each trajectory is
reduced to two points). This process is repeated until the finest
level of “approximation”, the full trajectory, is reached. Sugar

dx.doi.org/10.1016/j.cmpb.2011.05.008
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and Hand [28,29] suggest running the algorithm several times,
retaining the best solutions. KmL  mixes the solutions obtained
from different starting conditions and several runs. It proposes
three different ways to choose the initial seeds:

• randomAll: all the individuals are randomly assigned to a
cluster with at least one individual in each cluster. This
method produces initial seeds that are close to each other
(see Fig. 1(b)).

• randomK:  k individuals are randomly assigned to a cluster,
the other individuals are not assigned. Each seed is a single
individual and not an average of several individuals. This
method produces initial seeds that are not close to each
other, so that this method may produce initial seeds that are
from different clusters (possibly one seed in each cluster)
which will speed up the convergence (see Fig. 1(c)).

• maxDist: k individuals are chosen incrementally. The first
two are the individuals that are the farthest from each
other. The following individuals are added one at a time
and are the individuals farthest from those that are already
selected. The “farthest” is the individual with the greatest
distance from the selected individuals. If D is the set of the
individuals already selected, then the individual to be added
is individual i for who s(i) = minj∈D(Dist(i, j)) is maximum (see
Fig. 1(d)).

Different starting conditions can lead to different parti-
tions. As for the number of clusters, the “best” solution is the
one that maximizes the between-matrix variance and mini-
mizes the within-matrix variance.

2.4. Dealing  with  missing  values

There are very few papers that propose cluster analysis meth-
ods that deal with missing values [30]. The simplest way to
handle missing data is to exclude trajectories for which some
data are missing. This can however severely reduce the sample
size since longitudinal data are especially vulnerable to miss-
ing values. In addition, individuals with particular patterns of
missing data can constitute a particular cluster, for example
an “early drop-out” group.

KmL  deals with missing data at two different stages. First,
during clustering, it is necessary to calculate the distance
between two trajectories and this calculation can be ham-
pered by the presence of missing data in one of them. To tackle
this problem, one can either impute missing values (using
methods that we  define in the next paragraph) or use clas-
sic distances with Gower adjustment [31]: given yi and yj, let
wijlwijl be 0 if yil or yjl or both are missing, and 1 otherwise; the
Euclidian distance with Gower adjustment between yi and yj

is

DistE
NA(yi, yj) =

√√√√ t∑t

l=1wijl

t∑
l=1

(yil − yjl)
2.wijl

The second problematic step is the calculation of quality

criteria which help in the determination of the optimal par-
tition. At this stage, it can be necessary to impute missing
values. The classic “imputation by the mean” is not recom-
mended because it neglects the longitudinal nature of the
b i o m e d i c i n e 1 0 4 ( 2 0 1 1 ) e112–e121

data and is thus likely to annihilate the cluster structure. KmL
proposes several methods. Each deals with one of the three
particular situations: missing values at the start of the trajec-
tory (the first values are missing), at the end (the last values are
missing) or in the middle (the missing values are surrounded
by non-missing values).

The different methods can be described as follows:

• LOCF (Last Occurrence Carried Forward): The values missing
in the middle and at the end are imputed from the previous
non-missing values. For values missing at the start, the first
non-missing value is duplicated backwards.

• FOCB (First Occurrence Carried Backward): The values miss-
ing in the middle and at the start are imputed from the next
non-missing values. For values missing at the end, the last
non-missing value is duplicated forward.

The next four imputation methods all use linear inter-
polation for missing values in the middle; they differ for
the imputation of values missing at the start or at the end.
Linear interpolation imputes by drawing a line between the
non-missing values surrounding the missing one(s). If yil is
missing, let yia and yib be the closest preceding and fol-
lowing non-missing values of yik; then yik is imputed by
yil = (yib− yia)/(b  − a)(l − a) + yia.

For missing values at the start and at the end, different
options are possible:

• Linear interpolation, OCBF (Occurrences Carried Backward
and Forward): Missing values at the start and at the end
are imputed using FOCB and missing values at the end are
imputed using LOCF (see Fig. 2(a)).

• Linear interpolation, Global:  The values missing at the start
and the end are imputed on a line joining the first and
the last non-missing values (dotted line in Fig. 2(b)). If yil

is missing at the start or the end, let yis and yie be the
first and the last non-missing values; then yil is imputed
by yil = (yie− yis)/(e  − s) · (l − s) + yis.

• Linear interpolation, Local: Missing values at the start
and at the end are imputed locally “in continuity” (pro-
longing the closest non-missing values, see Fig. 2(c)). If
yil is missing at the start, let yis and yia be the first and
the second non-missing values; then yil is imputed by
yil = (yia− yis)/(a  − s) · (l − s) + yis. If yil is missing at the end,
let yie and yib be the last and the penultimate non-missing
value; then yil is imputed by yil = (yie− yib)/(e  − b) · (l − b) + yib.

• Linear interpolation, Bisector: the method Linear interpola-
tion, Local is very sensitive to the firsts and lasts values; the
method Linear interpolation, Global ignores developments
close to the end or to the start. Linear Interpolation, Bisec-
tor offers a mixed solution by considering an intermediate
line, the bisector between the global and the local lines (see
Fig. 2(d)).

Last method, copyMean is an imputation method that is
available only when clusters are known. The main idea is

to impute using linear interpolation, then to add a varia-
tion to make the trajectory follow the “shape” of the mean
trajectories. If yil is missing in the middle, let yia and yib

be the closest preceding and following non-missing values

dx.doi.org/10.1016/j.cmpb.2011.05.008
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Fig. 1 – Examples of different ways to choose initial seeds. (a) Shows the trajectories (there are obviously four clusters). (b)
Uses the randomAll method, the seeds are the mean of several individuals so they are close to each other; (c) uses the
randomK method, the seeds are single individuals. The four initial seeds are in three different clusters. (d) Uses the maxDist

method, the seeds are individuals far away from each other.
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Fig. 2 – Different variations of linear interpolation. T

f yil; let ym = (ym1 , . . . , ymt ) denote the mean trajectory of yi

luster. Then yil = (yib − yia)/(ymb − yma) · (yml − yma) + yia. If the
rst values are missing, let yis be the first non-missing value.
hen yil = yml + (yis − yms). If the last values are missing, let yie

e the last non-missing value. Then yil = yml + (yie − yme).
Fig. 3 gives examples of mean shape-copying imputation

the mean trajectory ym = (ym1 , . . . , ymt ) is drawn with white
ircles).

.  Package  description

n this section, the content of the package is presented (see
ig. 4).
ig. 3 – copyMean imputation method; triangles are known
alues, dots are imputed value and circles are the mean
rajectory.
les are known values and dots are imputed values.

3.1.  Preparation  of  the  data

One advantage of KmL  is that the algorithm memorizes
all the clusters that it finds. To do this, it works on a S4
structure called ClusterizLongData.  A ClusterizLongData

object has two main fields: traj stores the trajectories;
clusters is a list of all the partitions found. Data prepara-
tion therefore simply consists in transforming longitudinal
data into a ClusterizLongData object. This can be done
via function cld() or as.cld().  The first lets the user
build data, the second converts a data.frame “wide” for-
mat  (each line corresponds to one individual, each column
is one time) into a ClusterizLongData object. cld() uses
the following arguments (the type of the argument is given in
brackets):

• traj [array of numeric]: contains the longitudinal data. Each
line is the trajectory of an individual. The columns refer to
the time at which measures were performed.

• id [character]: single identifier for each individual (each tra-
jectory).

• time [numeric]: time at which measures were performed.
• varName [character]: name of the variable, for the graphic

output.
• trajMinSize [numeric]: Trajectories whose values are par-

tially missing can either be excluded by processing, or
included. trajSizeMin sets the minimum number of val-
ues that a trajectory must contain not to be excluded. For

example, if trajectories have 7 measurements (time = 7) and
trajSizeMin is set to 3, the trajectory (5,3,na,4,na,na,na)
will be included in the calculation while (2,na,na,na,4,na,na)
will be excluded.

dx.doi.org/10.1016/j.cmpb.2011.05.008
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Fig. 4 – Pack

3.2.  Finding  the  optimal  partition

Once an object of class ClusterizLongData has been cre-
ated, the kml() function can be called. kml() runs k-means
several times varying starting conditions and the number of
clusters. The starting condition can be randomAll, randomK or
maxDist as described in Section 2.3.  In addition, the allMeth-

ods method combines the three previous ones by running one
maxDist, one randomAll and then randomK for all the other
iterations.

By default, kml() runs k-means for k = 2, 3, 4, 5, 6 clusters,
20 times each using allMethods.

The k-means version used here is the Hartigan and
Wong version (1979). The default distance is the Euclidean
distance with Gower adjustment. The six distances defined
in the dist() function (“euclidean”, “maximum”, “man-
hattan”, “canberra”, “binary”, “minkowski”) and the
Frechet distance are also available. Finally, kml() can
work with user-defined distances through the optional
argument distance.  If provided, distance should be a
function that takes two trajectories and returns a num-
ber, letting the user compute a non-classical distance
(like the adaptive dissimilarity index or dynamic time
warping [19]).

Every partition found by kml() is stored in the Cluster-

izLongData object. The field Cluster is a list of sublists,
each sublist corresponding to a specific number of clusters
(for example; the sublist c3 stores all the partitions with
3 clusters). The storage is performed in real time. If kml()
is interrupted before the computation ends, the partitions
already found are not lost. When kml() is re-run several times
on the same data, the new partitions found are added to the
previous ones. This is convenient when the user asks for sev-
description.

eral runs, then realizes that the result is not optimal and asks
for further runs.

In addition, kml() saves all the partitions on the hard disc
at frequent intervals to guard against any system interruption
that may occurs when the algorithm is run for a long time
(days or weeks).

The main options of kml() are:

• Object [ClusterizLongData]: contains trajectories to cluster
and all the partition already found.

• nbClusters [vector(numeric)]: Vector containing the num-
ber of clusters with which kml() must work. By default,
nbClusters is 2:6 which indicates that kml() must
search for partitions starting from 2, then 3, . . . up to
6 clusters.

•  nbRedrawing:  [numeric]: Sets the number of times that k-
means must be re-run (with different starting conditions)
for each number of clusters.

• saveFreq:  [numeric]: Long computations can take several
days. So it is possible to save the object ClusterizLongData

at intervals. saveFreq defines the frequency of the saving
process.

• maxIt [numeric]: Sets a limit to the number of iterations if
convergence is not reached.

• imputationMethod: [character]: the calculation of the qual-
ity criterion cannot be performed if some values are
missing. imputationMethod defines the method used to
impute the missing values. It should be one of “LOCF”,

“FOCB”, “LI-Global”, “LI-Local”, “LI-Bisector”, “LI-OCFB” or
“copyMean” as presented in Section 2.4.

• distance [numeric ← function(trajectory,trajectory)]: func-
tion that computes the distance between two  trajectories. If

dx.doi.org/10.1016/j.cmpb.2011.05.008
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Fig. 5 – Fun

no function is specified, the Euclidian distance with Gower
adjustment is used.

 startingCond [character]: specifies the starting condition.
It should be one of “maxDist”, “randomAll”, “randomK” or
“allMethods” as presented in Section 2.3.

.3.  Exporting  results

hen kml() has found some partitions, the user can decide
o select and export some of them. This can be done via
he function choice().  choice() opens a graphic windows
howing information: on the left, all the partitions stored in
he object are represented by a number (the number of clus-
ers it comprises). Partitions with the same cluster number
re sorted according to the Calinski & Harabatz criterion in
ecreasing order, the best coming first. From all the parti-
ions, one is selected (black dot). The means trajectories it
efines are presented on the right-hand side of the windows

see Fig. 5).
The user can decide to export the partition with the highest

alinski & Harabatz criterion value. But since quality criteria
re not always as efficient as one might expect, he can also
isualize different partitions and decide which he wants to
xport, according to some other criterion.

When partitions have been selected (the user can select
ny number), choice() saves them. The clusters are there-
ore exported to a csv file; the Calinski & Harabatz criterion,
he percentage of individuals in each cluster and various other
arameters are exported towards a second file. Graphical rep-
esentations are exported in the format specified by the user.
hoice() arguments are:

Object [ClusterizLongData]: Object containing the trajecto-
ries and all the partitions found by kml() from which the
user want to make an export.

 typeGraph [character]: For every selected partition,

choice() exports some graphs, type sets the format that
will be used. Possible formats are those available for save-

Plot(): “wmf”, “emf”, “png”, “jpg”, “jpeg”, “bmp”, “tif”,
“tiff”, “ps”, “eps” and “pdf”.
 choice().

3.4. Reliability  of  results

As we noted in Section 1, quality criteria are not always effi-
cient. Using several of them might strengthen the reliability
of the results. The function plotAllCriterion displays the
three criteria estimated by the algorithm (Calinsky & Hara-
batz, Ray & Turi, Davies & Bouldin). In order to plot them
on the same graph, they are mapped into [0,1]. In addition,
while the Davies & Bouldin is a criterion that should be mini-
mized, plotAllCriterion considers its opposite (and thus it
becomes a criterion that has to be maximized, like the other
two). Fig. 6 gives an example of concordant and discordant
criteria.

4. Sample  runs  and  example

4.1. Artificial  data  sets

To test kml() and compare the efficiency of its various options,
we used simulated longitudinal data. We  constructed the data
as follows: a data set is the mixture of several sub-groups. A
subgroup m is defined by a function fm(x) called the theoretical
trajectory. Each subject i of a sub-group follows the theoretical
trajectory of its subgroup plus a personal variation εi(x). The
mixture of different theoretical trajectories is called the data
set shape. The final construction is performed with the func-
tion gald() (Generate Artificial Longitudinal Data). It takes
the cluster sizes, the number of time measurements, func-
tions that define the theoretical trajectories and noise for each
cluster. In addition, for each cluster, it is possible to decide that
a percentage of values will be missing.

To test kml, 5600 data sets were formed varying the data set
shape, the number of subjects in each cluster and the personal
variations. We  defined four data set shapes:

1. (a) Three diverging lines is defined by fA(x) = − x; fB(x) = 0;
fC(x) = x with x in [0:10].
2. (b) Three crossing lines is defined by fA(x) = 2; fB(x) = 10;
fC(x) = 12 − 2x with x in [0:6].

3. (c) Four normal laws is defined by fA(x) = N(x − 20,  4); fB(x) =
N(x − 25,  4); fC(x) = N(x − 30,  4); fD(x) = N(x − 25,  16)/2 with

dx.doi.org/10.1016/j.cmpb.2011.05.008
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Fig. 6 – Function plotAllCriterion(): (a) all the criteria suggest 4 clusters and (b) the criteria does not agree on the
number of clusters.

jecto
Fig. 7 – Tra

x in [0:50] (where N(�, �2) is the normal law of mean � and
standard deviation �).

4. (d) Crossing and polynomial is defined by fA(x) = 0; fB(x) = x;
fC(x) = 10 − x; fD(x) = − 0.4x2 + 4x with x in [0:10].

Trajectory shapes are presented Fig. 7.
They were chosen either to correspond to three clearly

identifiable clusters (set (a)), or to present a complex struc-
ture (every trajectory intersecting all the others (set (d))), or
to copy some real data (sets (b) and (c)). Personal variations
εi(x) are randomised and follow the normal law N(0, �2). Stan-
dard deviations step from � = 0.5 to � = 8 (by steps of 0.01). Since
the distance between two theoretical trajectories is around 10,
� = 0.5 provides some “easily identifiable and distinct clusters”
whereas � = 8 give some “markedly overlapping groups”.

The number of subjects in each cluster is set at either 50 or
200.

In all, 4 (data set shape) × 750 (variance) × 2 (number of sub-
jects) = 6000 data sets were created.

4.2.  Results

Let P be a partition found by the algorithm and T the “true”
partition (since we are working on artificial data, T is known).

The correct classification rate (CCR) is the percentage of tra-
jectories that are in the same cluster in P and T [32] that is the
percentage of subjects for whom an algorithm makes the right
decision. To compare the starting conditions, we  modelled the
ry shapes.

impact on the various factors (starting conditions, number of
iterations, standard deviation, size of the groups and data set
shapes) on the CCR using a linear regression.

Of the three starting methods, maxDist is the most efficient
(see Fig. 8(a)). On the other hand, maxDist is a determin-
istic method. As such, it can be run only once, whereas
the two other starting conditions can be run several times.
Between randomAll and randomK, the former gives better
results but the difference tends to disappear as the number of
runs increases (see Fig. 8(b)). Overall, allMethod which com-
bines the three other starting conditions is the most efficient
method.

4.3. Application  to  real  data

We also tested KmL  on real data. To assess its performance, we
compared it to Proc Traj, semi-parametric procedure widely
used to cluster longitudinal data [33]. The first example is
derived from [34]. In a sample of 1492 children, daily sleep
duration was reported by the children’s mothers at ages 2.5,
3.5, 4, 5, and 6. The aim of the study was to investigate
the associations between longitudinal sleep duration patterns
and behavioural/cognitive functioning at school entry. On this

data, KmL  finds an optimal solution for a partition into four
clusters, as does Proc Traj. The partitionings found by the two
procedures are very close (see Fig. 9). The average distance
between observed trajectories found by Proc Traj and by KmL
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Fig. 8 – CCR according the different starting methods.

L  (on the left) and Proc Traj (on the right).
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Fig. 10 – Trajectories of the evolution of hospitalisation
Fig. 9 – Mean trajectories found by Km

s 0.31, which is rather small considering the range of the data
0;12).

The second example comes from an epidemiological sur-
ey on anorexia nervosa. The survey, conducted by Dr.
athalie Godard, focuses on 331 patients hospitalized for
norexia. Patients were followed for 0–26 years retrospectively
t their first admission, and prospectively thereafter. One of
he variables of interest is the annual time spent in hospital.
he authors sought to determine whether there were homo-
eneous subgroups of patients for this variable. On these data,
mL  found an optimal solution for a partition into three clus-

ers. Depending on the number of clusters specified in the
rogram, Proc Traj either stated a “false convergence” or gave

ncoherent results. The trajectories found by KmL  are pre-
ented in Fig. 10.

.  Discussion

.1.  Overview

mL  is a new implementation of k-means specifically
esigned to cluster longitudinal data. It can work either
ith classical distance (Euclidean, manhattan, Minkovski,

tc.), with a distance dedicated to longitudinal data (Frechet,

ynamic time warping) or with any user-defined distance. It

s able to deal with missing values, using either using Gower
djustment or several imputation methods that are provided.
t also provides an easy way to run the algorithm several
length.

times, varying the starting conditions and/or the number of
clusters looked for. As k-means is non-deterministic, vary-
ing the starting condition increases the chances of finding
a global maximum. Varying the number of clusters enables
selection of the correct number of clusters. For this purpose,
KmL  provides three quality criteria whose effectiveness has

been demonstrated several times. These are Calinsky & Hara-
batz, Ray & Turi and Davies & Bouldin. Finally, the graphical
interface makes it possible to visualize (and export) the dif-
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ferent partitions found by the algorithm. This gives the user
the possibility of choosing the appropriate number of clusters
when classic criteria are not efficient.

5.2.  Limitations

KmL  nevertheless suffers from a number of limitations
inherent to the k-means, non-parametric algorithms and
partitioning algorithms. First, clusters found by KmL  are
spherical. Consequently, these clusters all have more  or less
the same variance. In the case of a population composed of
groups with different variances, KmL  would have difficulty
identifying the correct clusters. In addition, KmL  is nonpara-
metric, which is an advantage in some circumstances, but also
a weakness. Indeed, it is not possible to test the fit between
the partition found and a theoretical model, nor to calculate
a likelihood. Finally, like all partitioning algorithms, KmL  is
unable to give truly reliable and accurate information on the
number of clusters.

5.3.  Perspectives

A number of unsolved problems need investigation. The opti-
mization of cluster number is a long-standing and important
question. Perhaps the particular situation of longitudinal data
and the strong correlation between different measurements
could lead to an efficient solution which is still lacking in the
general context of cluster analysis. Another interesting point
is the generalization of KmL  to problems of higher dimension.
At this time, KmL  deals only with longitudinal trajectories for a
single variable. It would be interesting to develop it for multidi-
mensional trajectories, considering several facets of a patient
jointly.
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